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Thermal Fluctuations Limit the Adhesive Strength
of Compliant Solids

Tian Tang
Anand Jagota
Manoj K. Chaudhury
Department of Chemical Engineering, Lehigh University, Bethlehem,
Pennsylvania, USA

Chung-Yuen Hui
Department of Theoretical and Applied Mechanics, Cornell University,
Ithaca, New York, USA

For compliant solids, the stress required to separate an interface (its adhesive
strength) appears to be much lower than that calculated by computing intersurface
interactions. We explore the hypothesis that the adhesive strength is limited in
value by thermal fluctuations. In a simple model of an interface, molecules bridg-
ing the two surfaces are represented by linear entropic springs. Asymptotic and
numerical analyses are carried out to evaluate the adhesive strength and effective
work of adhesion. For stiff materials, adhesive strength is found to be equal to the
intrinsic strength—the maximum value of intersurface stress computed ignoring
fluctuations. For compliant materials, adhesive strength is significantly reduced
and is on the order of the elastic modulus. The effective work of adhesion agrees
with the intrinsic work of adhesion for stiff materials and can decay slowly with
increasing compliance.

Keywords: Adhesive strength; Compliance; Statistical model; Thermal fluctuation;
Work of adhesion

1. INTRODUCTION

Two physical quantities are usually used to characterize the adhesion
between solids: the stress needed to separate the interface and the
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work absorbed in the separation process. For elastic solids with no
bulk energy dissipation, the primary resistance to crack growth on
the interface is provided by intermolecular forces, e.g., van der Waals
interactions in the case of unbonded interfaces. Based on molecular
theories [1], a typical plot of the applied stress versus displacement
has an increasing branch at relatively small displacement and a
decreasing branch at relatively large displacement. The stress at
which the two branches meet is the upper limit for the applied stress
and is referred to as the intrinsic adhesive strength, ro. The area
under the stress-displacement curve is the energy to fracture a unit
area of the interface and is the intrinsic work of adhesion, Wad. These
two quantities are connected through the cohesive zone theory of frac-
ture, first proposed by Dugdale [2] and Barenblatt [3].

The adhesive strength, ro, is on the order of Wad=do, where do is a
characteristic length representing the separation between the two sur-
faces. If one imagines that the bodies are separated as rigid entities, the
characteristic length, do, derives from the inter-surface potential and is
of order nanometers to angstroms. For van der Waals types of interac-
tions, Wad is about 50�100 mJ=m2. Using these numbers, the intrinsic
adhesive strength, ro, is found to be 102�103 MPa. For stiff materials,
defined here as those with elastic modulus much greater than intrinsic
strength, such a value poses no problem. However, for compliant mate-
rials such as gels and elastomers, the intrinsic strength can be much
larger than the elastic modulus. How can a material separation process
require the imposition of surface tractions so much in excess of its elas-
tic modulus? Indeed, it has been shown by Hui et al. [4] that if ro is
much larger than the elastic modulus, EM, a crack tip in the material
tends to blunt instead of propagating. Therefore, the failure of the
interface must often occur by some process that can operate at a stress
on order of or lower than the elastic modulus. An example of such a
process is elastic cavitation [5]; other possibilities are discussed in
Ref. [4]. Nevertheless, interfacial separation does eventually occur.

To our knowledge, there are no conclusive and direct measurements
of the adhesive strength. However, its value is an important determi-
nant of the relationship between intrinsic work of fracture and dissi-
pative mechanisms, e.g., viscoelastic or plastic deformation [6,7], and,
thus, can be inferred. The adhesive strength to match the experimental
data of Mazur and Plazek [8] on the coalescence of acrylic beads was
found by Lin et al. [9] to be on the order of 1 MPa, two orders of magni-
tude smaller than ro predicted by van der Waals interactions. The
adhesive stress used by Jagota et al. [10] to match experiments on deco-
hesion of a viscoelastic polymer was again on the order of the modulus.
The critical stress at which cavitation occurs at the interfaces of cross
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linked rubbers and hydrophobic solids also is a fraction of 1 MPa,
[11,12]. Another interesting example is the Johnson-Kendall-Roberts
(JKR) test [13]. This test has been used to measure the surface energy
of soft polymers [14]. The modulus of these polymers is on the order of
1 MPa, which is at least two orders of magnitude lower than the intrin-
sic strength of the interface. This means that the stress at the edge of
the contact zone must exceed the elastic modulus of the polymer by
two orders of magnitude! This result is difficult to reconcile by a stress
concentration argument, especially in light of the fact that the air gap
just outside the contact zone is typically very sharp, which is consistent
with small deformation. Thus, one is led to the inescapable conclusion
that the adhesive stress of soft solids is much lower than its intrinsic
value. On the other hand, despite this inconsistency with van der Waals
theory concerning adhesive strength, the work of adhesion in a JKR test
is in good agreement with the van der Waals theory—a paradox!

These considerations raise the following questions. In compliant
materials, why is the stress required to separate the interface so much
lower than its value computed by integrating intermolecular forces
between the two bodies? That is, how can the interface fail under a
load that is much smaller than the load needed to conquer the inter-
molecular attraction?

A calculation of intersurface forces between two bodies implicitly
assumes that the molecules in the two solids are frozen at their
location. That is, although fluctuations of thermal photons are
included at a fundamental level in the Lifshitz theory used to calculate
van der Waals forces, molecules themselves are not allowed to fluctu-
ate in space. This is the case of zero temperature or very low com-
pliance. At higher temperature or higher compliance, however, one
would expect thermal fluctuations of the molecules. Although this is
generally true for all solids, in this article we will imagine the space
between the two solids as being occupied by a layer of bridging chains,
germane to polymeric solids. Each of these chains undergoes stretch-
ing and has a finite probability of detaching from one of the surfaces.
The number of undetached chains follows thermodynamic statistics
and decays rapidly with the applied displacement. Because the exter-
nal stress is balanced by the tension in the chains, the actual adhesive
stress can be lowered considerably by thermal fluctuations.

A statistical chain-breaking model has been used by Chaudhury
et al. [14,15] in their study of rate-dependent fracture on polymeric
interfaces. (See also Refs. [15] and [16] for references to other previous
models of adhesion based on kinetics of detachment or breakage of
molecules.) Hui et al. [17], using a similar approach, provided closed-
form solutions for the fracture toughness of a growing crack at very
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high or very low speed. However, these works did not address the
question of interfacial strength.

In this work, we ask the following questions: Can thermal fluctua-
tions allow an interface to separate without having to go over the van
der Waals peak stress? More specifically, how does the adhesive
strength depend on material properties and the intrinsic work of
separating the interface? We consider only equilibrium situations
here, but the framework can be extended to study rate-dependent
interfacial separation.

The plan of the article is as follows. In Section 2, we explain how we
model the interactions between two solids by introducing thermal fluc-
tuations. Adhesive stress and effective work of adhesion are formu-
lated using this model. In Section 3, we provide numerical results
for adhesive stress and effective work of adhesion. Asymptotic analy-
ses, carried out in Section 4, provide closed-form solutions in various
limits that are in excellent agreement with numerical results. We con-
clude in Section 5 with a summary of our results.

2. MODEL

Consider two solids separated by a distance u, as drawn in Figure 1.
For simplicity, let us assume thermal fluctuations on only one of the
solids, solid 2 on the right. That is, the molecules of solid 2 are mobile.
Their positions can vary and approach surface 1. The distance from
the end of a molecule to surface 1 is denoted by d. We assume

FIGURE 1 Surfaces of two solids at a distance u. Solid 1 is assumed to be
rigid with a smooth surface, whereas molecules in solid 2 fluctuate thermally
under the influence of van der Waals attraction from solid 1 and a restoring
force linear in the extension of the molecule itself.
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van der Waals interaction between the two solids. The van der Waals
attraction tends to stretch molecules towards surface 1, while a restor-
ing spring force tends to pull them back. Hence, there are two contri-
butions to the total energy between the two solids. Two important
parameters expected to govern the relationship between effective
and intrinsic strength are temperature and compliance.

Modeling the bridging molecules as linear springs with compliance C
[18], the energy associated with a particular molecule can be written as

Eðu; dÞ ¼ ðu� dÞ2

2C
�Wad

Ro

do

dþ do

� �2

; ð1Þ

where Ro is the number of molecules per unit area on surface 2, Wad is
the intrinsic work of adhesion, and do is a cutoff distance in the van der
Waals interaction. The first term represents the energy in the
stretched spring; the second term represents the van der Waals energy
of attraction. (See Appendix A for details.) Figure 2 gives an example of
Eðu; dÞ as a function of d. Each term in Equation (1) is plotted separ-
ately. It can be seen from this figure that Eðu; dÞ generally contains
two minima. One of them is at d ¼ 0 (circle) and represents the bound
state. The other is at d ffi u (triangle) and represents the unbound state.
In general, a molecule can pick from a continuum of states, but it has
higher probability of staying near the energy minima. As is shown
later, for small u, the second minimum at d ffi u vanishes, and most
of the molecules stay in the bound state at d ¼ 0. As u increases, the

FIGURE 2 Energy Eðu; dÞ as a function of d and each term in Equation (1).
Eðu; dÞ shown in this figure has two minima, one at d ¼ 0 (circle) and the other
at d ffi u (triangle).
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second minimum appears, and the shallow energy well at d ffi u allows
more and more molecules to stay in the unbound state. Our goal in this
work is to determine where the molecule will try to ‘‘sit’’ for a given u
and to use that information to compute thermodynamic quantities.

Our simple model attempts to represent the fact that, especially for
compliant molecules, many detached states are made available as the
molecules are stretched. The conjecture is that well before the mol-
ecule is stretched so much that its attached state is at intrinsic
adhesive strength, most chains will already be in the detached state.
This mechanism will then limit the strength of the interface.

In equilibrium, at a given value of separation, u, molecules will have
a variety of different extensions, d. If we can calculate the probability
density for a particular extension, we can then use this information
to compute the mean force resisting the applied separation, which is
what we desire to know. To do this, we formulate a partition function
for our model. This can be used to derive all the physical quantities
we need using Boltzmann statistics [19]. In particular, we treat Wad

in Equation (1) as fixed and determine how compliance, C, and tem-
perature, T, affect the adhesive strength and effective work of fracture.

Given u, the partition function, ZðuÞ, under isothermal condition, is
by definition the sum of the Boltzmann factor e�Eðu;dÞ=kT over all poss-
ible states [19], where k is the Boltzmann constant and T is tempera-
ture. Because, for a given u, different states correspond to different d,
the partition function is given by

ZðuÞ ¼ 1

do

Z 1
0

e�Eðu;dÞ=kTdd; ð2Þ

where do has been chosen to normalize the integral so that ZðuÞ is
dimensionless. As is well known, this normalization has no effect on
thermodynamic properties. We allow d to vary from 0 to 1, i.e., the
end of the molecule is a priori allowed to explore any position from con-
tact with the rigid surface to infinite separation from it to the right.
Actual positions of the molecule are always confined for d > u by the
quadratic spring potential and for d < u either by the rigid surface
(for small u) or again by the spring potential. A more realistic restor-
ing potential for the spring will likely be asymmetric about u, not
quadratic. In particular, we might expect a greater energetic penalty
for d > u than for d < u. We have explored a few different options for
potentials that capture this physical feature. Results based on these
more complicated potentials appear not to change qualitatively any
of our conclusions but add considerable complexity. Therefore, for
the sake of simplicity, we have adopted the simple potential given in
Equation (1).
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A number of physical quantities can be obtained from the partition
function. For example, the Helmholtz free energy is related to Z
by [19]

GðuÞ ¼ �kT ln Z; ð3Þ

and the average internal energy is

hEi ¼
R1

0 Eðu; dÞe�Eðu;dÞ=kTddR1
0 e�Eðu;dÞ=kTdd

¼ � 1

Z

@Z

@ð1=kTÞ ; ð4Þ

The mean adhesive stress is

rðuÞ ¼ Ro
@GðuÞ
@u

¼ �RokT

Z

@Z

@u
: ð5Þ

Substituting Equations (1) and (2) into Equation (5) results in

rðuÞ ¼
Ro

R1
0 ðu� dÞe�Eðu;dÞ=kTdd

C
R1

0 e�Eðu;dÞ=kTdd
: ð6Þ

This result is clearly identifiable as the average force on a chain
times its areal number density. The effective work of adhesion is
the change in Helmholtz free energy of the system with the two sur-
faces in contact and remote from each other:

Weff ¼ Ro

Z 1
uo

rðuÞdu ¼ Ro½Gð1Þ �GðuoÞ�; ð7Þ

where uo is the displacement where the average stress is zero, i.e.,
rðuoÞ ¼ 0. Note that at zero stress the displacement is itself nonzero,
in general; zero stress is at some small value of separation, uo. How-
ever, numerical computations show that its value is small. More
specifically, the work to separate the interface from u ¼ 0 to uo is
negligible. Because in general uo cannot be obtained explicitly, we
make the following approximation:

Weff � Ro½Gð1Þ �Gð0Þ�; ð8Þ

i.e., we neglect the work required to separate the two surfaces from 0
to uo. This approximation has been validated numerically.

To expedite the analysis, we introduce the following normalization:

u � do �uu; d � do
�dd; E � kTE;

G � kTG; r � 2Wad�rr
do

; Weff �WadWeff :
ð9Þ
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Variables �uu and �dd are, respectively, the normalized separation and
end-to-surface distance. E and G are, respectively, the normalized
internal energy and free energy. �rr is the adhesive stress normalized
by the peak van der Waals stress, i.e., the intrinsic strength
2Wad=do, and Weff is the effective work of adhesion normalized by
the intrinsic work of adhesion.

By using Equation (9), we can write Equations (1–4), (6), and (8) as

Eð�uu; �ddÞ ¼ Kð�uu; �ddÞ
T

; ð10aÞ

Zð�uuÞ ¼
Z 1

0

e�Kð�uu;�ddÞ=Td�dd; ð10bÞ

Gð�uuÞ ¼ � ln Z; ð10cÞ

hEi ¼ � 1

ZT

@Z

@ð1=TÞ
; ð10dÞ

�rrð�uuÞ ¼ 3

C
�uu� Ið�uuÞ

Zð�uuÞ

� �
; ð10eÞ

Weff � T½Gð1Þ �Gð0Þ�; ð10fÞ

where

Kð�uu; �ddÞ � 3

C
ð�uu� �ddÞ2 � 1

ð1þ �ddÞ2
; T � RokT

Wad
; C � 6WadC

Rod
2
o

; ð11Þ

Ið�uuÞ �
Z 1

0

�dde�Kð�uu;�ddÞ=Td�dd: ð12Þ

In Equation (11), Kð�uu; �ddÞ is the normalized energy function. For fixed
Wad, T can be treated as a normalized temperature, and C is a normal-
ized compliance. Ið�uuÞ in Equation (12), when normalized by Zð�uuÞ, can
be considered as the average position of the end of a generic chain at a
given separation, u.

We first show that for the case of extremely low temperature, i.e.,
T ! 0, the effective work of adhesion, Weff , approaches the intrinsic
work of adhesion, Wad. Specifically, according to Equations (10c) and
(10f), to evaluate Weff , we need to evaluate the partition function in
the unbound state where �uu!1 and in the bound state where
�uu! 0. In the unbound state, as �uu!1, the normalized energy
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K �uu; �dd
� �

defined in Equation (11) is essentially governed by the quad-
ratic term 3ð�uu� �ddÞ2=C. That is, a molecule fluctuates in the confining
harmonic potential. The partition function can be approximated by

Zð1Þ � lim
�uu!1

Z 1
0

e�ð3=C TÞð�uu��ddÞ2d�dd ¼

ffiffiffiffiffiffiffiffiffiffiffi
pC T

3

s
: ð13Þ

In the bound state, as �uu! 0;Kð0; dÞ ¼ 3�dd
2
=C� 1=ð1þ dÞ2 is a mono-

tonically increasing function of �dd. The rapid decay of the exponential
factor in the partition function implies that the value of the partition
function is determined by the behavior of Kð0; �ddÞ near its global mini-
mum, which occurs at �dd ¼ 0. Hence

Zð0Þ �
Z 1

0

e�ð�1þ2�ddÞ=Td�dd ¼ Te1=T

2
: ð14Þ

Using Equations (10c,d), (13), and (14), it can be shown that as T ! 0,
both Gð1Þ and hEð1Þi go to zero, whereas both Gð0Þ and hEð0Þi go
to �1=T. The latter is expected because the free energy and the mean
internal energy should become the intrinsic adhesion energy when the
two surfaces are in contact at 0 K. The normalized effective work of
adhesion, Weff , according to Equation (10f), is therefore unity, that
is, Weff ¼ Wad.

3. NUMERICAL RESULTS

We now consider the more general case where T is finite. For soft
materials such as poly (dimethylsiloxane) (PDMS) with van der Waals
type of interaction, the intrinsic work of adhesion is about
Wad � 50 mJ=m2 [15]. Take a typical value of areal number density
Ro � 1� 1018 m�2. Using these numbers, T at room temperature is
about 0.08, which is much less than 1, and this is the limit we are most
concerned with in this work.

The adhesive stress and effective work of adhesion is determined by
Equations (10e) and (10f), respectively. Thus, the problem reduces to
the evaluation of Zð�uuÞ and Ið�uuÞ. In the following, we present the
results for the adhesive stress and effective work of adhesion evalu-
ated by numerically integrating Zð�uuÞ and Ið�uuÞ. These numerical
results are compared with asymptotic solutions, which are presented
in the next section.

Figure 3 plots �rrð�uuÞ versus �uu for T ¼ 0:08 and different values of nor-
malized compliance, C. Symbols are numerical results, and solid lines
are asymptotic solutions. Figure 3 shows that the adhesive stress
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increases linearly with separation for small �uu. This represents the fact
that almost all the springs are at the bound state and are being pulled
out. Indeed, using Equation (10e) and our asymptotic solution (19a,b),
one can easily show that, as long as �uu << C=3 and C >> 3T=2,

�rr ffi 3

C
�uu� T

2

� �
; ð15aÞ

which, in dimensional form, is

r ffi Ro

C
u� RokT

2Wad
do

� �
: ð15bÞ

The first term in Equation (15b) represents the restoring spring force.
The negative term captures the fact that zero stress occurs at a
slightly positive value because of entropic repulsion from the hard
wall. The decay of the adhesive stress after its peak indicates that
the number of springs in contact is falling off rapidly with increasing
displacement.

Figure 3 shows that for small compliance (C << 1), i.e., for very stiff
materials, the normalized peak stress approaches unity, indicating
that rmax approaches 2Wad=do, the intrinsic strength. The peak stress
decreases considerably as the compliance increases. An estimate of C
for compliant materials (e.g., PDMS), based on the entropy of freely
jointed chains, is [18]

FIGURE 3 Normalized adhesive stress versus normalized separation. For
each C, symbols are results obtained by numerical integration of Zð�uuÞ and
Ið�uuÞ, and the solid line represents an asymptotic solution given in Section 4.
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C ¼ Nb2

3kT
; ð16Þ

where b is the Kuhn length, and N is the number of rigid segments in
one chain, i.e., the total length of the chain divided by b. Taking
b ¼ 2 nm and N ¼ 1000, C at room temperature is about 105 m=N.
Using Wad ¼ 50 mJ=m2, Ro ¼ 1� 1018 m�2 and do ¼ 1 Å, C turns out
to be on the order of 106. The insert in Figure 3 shows the adhesive
stress for C ¼ 106. The peak stress normalized by 2Wad=do is about
6� 10�4. Because the intrinsic strength, 2Wad=do, using these para-
meters is 103 MPa, the actual peak stress, i.e., the adhesive strength,
is 6� 10�4 � 103 MPa ¼ 0:6 MPa. The elastic modulus EM is related to
C by [18]

EM ¼
Ro

ffiffiffiffiffi
N
p

b

C
¼ 6Wad

do

ffiffiffiffiffiffiffi
T

2C

s
; ð17Þ

and its value for the given parameters is approximately 0.6 MPa.
Thus, we arrive at a result showing that the adhesive strength can
be reduced by thermal fluctuations of the molecules to a value on
the order of the modulus for a compliant solid.

Figure 4 shows the normalized peak stress versus the normalized
compliance for a large range of C. Circles are obtained from numerical

FIGURE 4 Normalized peak adhesive stress versus normalized compliance C.
Circles are numerical results, the solid line is an asymptotic solution, and the
dashed line is the normalized elastic modulus.
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integration, and the solid line is peak stress calculated using
Equations (10e), (19a,b), and (20a,b) (in Section 4). On the same plot,
we compare the normalized peak stress with the normalized elastic
modulus, EM=ð2Wad=doÞ, which is shown as the dashed line. The
adhesive strength is significantly smaller than the elastic modulus
for stiff materials. With increasing compliance, the adhesive strength
and elastic modulus become very similar in magnitude.

The effective work of adhesion is calculated according to Equations
(10c) and (10f). Figure 5 gives the numerical result (circles) for the nor-
malized effective work of adhesion as a function of normalized
compliance. It is compared with the asymptotic solution, Equations
(25a,b) in section 4 (solid line). Figure 5 shows that the effective work
of adhesion approaches the intrinsic work of adhesion for stiff materi-
als (C << 1) and decreases logarithmically with compliance for C >>1.
For C ¼ 106, Weff is about 20% of Wad. As is shown in the next section,
this decrease in the effective work of adhesion is due to the difference
in entropy of the bound and unbound states.

In Figures 3 and 4, we have shown by direct integration of Equa-
tions (10b) and (12) that our simple model predicts that adhesive
strength can be decreased dramatically because of thermal fluctua-
tions of molecules. This is essentially due to the fact that, by virtue
of their compliance, many detached states are made available to a mol-
ecule well before the stress in the attached state reaches the maximum

FIGURE 5 Normalized effective work of adhesion as a function of normalized
compliance. Circles are numerical results. The solid line is an asymptotic sol-
ution. Dashed lines illustrate that the effective work of adhesion can be
increased by modifying the linear spring model.
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van der Waals stress. By the time this peak stress is reached, most
chains are already in the detached state. In the next section, we ana-
lyze the model in more detail to extract its behavior in various limiting
cases.

4. ASYMPTOTIC ANALYSIS

In this section, we carry out asymptotic analysis to obtain the adhesive
stress and effective work of adhesion. Specifically, we give a closed-
form solution for the effective work of adhesion as a function of tem-
perature and compliance. We show that the effective work of adhesion
decays logarithmically with compliance for soft materials. This decay
is an entropic effect. Its magnitude can be bounded by modifying the
linear spring model using a constrained potential.

The Laplace method [20] has been used for the asymptotic analysis.
The basic idea is that although we explore all the possible states of the
molecule, the most probable states are those in the vicinity of energy
minima. Therefore, we can estimate the stress and work of adhesion
by considering only contribution from those states. Specifically,
because of the fast decay of the exponential function, the evaluation
of the integrals Zð�uuÞ in Equation (10b) and Ið�uuÞ in Equation (12) can
be approximated by expanding the energy function about its minima.
Details of the solution are given later.

4.1. Linear Spring Model

As pointed out in the previous section, we need to evaluate Zð�uuÞ and
Ið�uuÞ to obtain adhesive stress and effective work of adhesion. We
focus our interest on the case of T << 1, which corresponds to tem-
perature lower than or of the same order as the room temperature.
The Laplace method [20] tells us that, as long as T << 1, the beha-
vior of the integrals Zð�uuÞ and Ið�uuÞ is determined by the behavior of
the normalized energy function Kð�uu; �ddÞ near its minimum. If there
are two or more minima, then the integral is determined by the
absolute minimum, which can occur at the boundary points. Physi-
cally this means that we can estimate the relative probabilities of
state occupancy by integrating separately in the vicinity of each
equilibrium state only. In this section, we use the Laplace method
to obtain the asymptotic behaviors of Zð�uuÞ and Ið�uuÞ for T << 1 and
use the results to calculate the free energy, stress, and effective work
of adhesion.

We first determine the locations of the minima of Kð�uu; �ddÞ for a given
�uu. It can be shown (see Appendix B) that the existence and locations
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of the minima depend on the normalized compliance C defined in
Equation (11).

Case I: C � 1

1) If �uu � �uumin � ð4=3ÞC
1=4 � 1, then the minimum of Kð�uu; �ddÞ occurs at

�dd ¼ 0.
2) If �uumin < �uu � �uumax � C=3, then there is one minimum at zero,

maximum at �dd1 and one minimum at �dd2, and �dd1 < �dd2.
3) If �uu > �uumax, then there is only one minimum at �dd2.

Figure 6 illustrates these three situations. We have verified
numerically that a good approximation to �dd2 in Cases I.2 and I.3 is

�dd2 � �uu� 0:4C

ð1þ �uuÞ3
: ð18Þ

Case II: C < 1

1) If �uu � �uumax, then the minimum of Kð�uu; �ddÞ occurs at �dd ¼ 0.
2) If �uu > �uumax, then there is only one minimum at �dd2 approximated by

Equation (18).

Because of the rapid decay of the exponential factor in Zð�uuÞ and
Ið�uuÞ, the simplest way of estimating these integrals is to add the two
contributions from �dd ¼ 0 and �dd ¼ �dd2. Details of the calculation are
given in Appendix C. Here we only give the final results.

FIGURE 6 Different shapes of the normalized energy function Kð�uu; �ddÞ for
�uu� �uumin � 4C

1=4
=3� 1, �uumin < �uu� �uumax � C=3, and �uu> �uumax in the case of C� 1.
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C � 1:

Zð�uuÞ � Te�Kð�uu;0Þ=T

K0ð�uu; 0Þ Hð�uumax � �uuÞ

þ e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
AHð�uu� �uuminÞ; ð19aÞ

Ið�uuÞ � T
2
e�Kð�uu;0Þ=T

½K0ð�uu; 0Þ�2
Hð�uumax � �uuÞ

þ
�dd2e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
AHð�uu� �uuminÞ: ð19bÞ

C<1:

Zð�uuÞ � e� Kð�uu;0Þ=T� K0ð�uu;0Þ½ �2=2TK00ð�uu;0Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; 0Þ=pT

q erfc
K0ð�uu; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TK00ð�uu; 0Þ

q
0
B@

1
CAHð�uumax � �uuÞ

þ e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
AHð�uu� �uumaxÞ; ð20aÞ

Ið�uuÞ � Te�Kð�uu;0Þ=T

K00ð�uu; 0Þ �
K0ð�uu; 0Þ
K00ð�uu; 0Þ

e� Kð�uu;0Þ=T� K0ð�uu;0Þ½ �2=2TK00ð�uu;0Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; 0Þ=pT

q
2
64

� erfc
K0ð�uu; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TK00ð�uu; 0Þ

q
0
B@

1
CA
3
75Hð�uumax � �uuÞ

þ
�dd2e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
AHð�uu� �uumaxÞ ð20bÞ

where K0ð�uu; �ddÞ and K00ð�uu; �ddÞ are, respectively, the first and second deri-
vatives of Kð�uu; �ddÞ with respect to �dd given by

K0ð�uu; �ddÞ ¼ � 6

C
ð�uu� �ddÞ þ 2

ð1þ �ddÞ3
; ð21aÞ
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K00ð�uu; �ddÞ ¼ 6

C
� 6

ð1þ �ddÞ4
: ð21bÞ

In Equations (19a,b) and (20a,b), H is the Heaviside step function. It is
multiplied to the second term of each equation because the local mini-
mum �dd2 only exists if �uu > �uumin (C � 1) or �uu > �uumax (C < 1). A factor of
Hð�uumax � �uuÞ is multiplied to the first term in Equation (20a) because
K0ð�uu; 0Þ < 0 for �uu > �uumax, and so that application of the Laplace method
at �dd ¼ 0 is no longer valid.

The adhesive stress can be calculated using Equations (10e), (19a,b),
and (20a,b). The asymptotic solution compares well with numerical
result in Figure 3. The effective work of adhesion is calculated using
Equations (10c,f), (19a), and (20a). According to Equation (18), as
�uu!1, �dd2 ! �uu. Therefore both Equations (19a) and (20a) predict

Zð�uu!1Þ � e�Kð�uu;�uuÞ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �uuÞ=pT

q erfc ��uu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �uuÞ

2T

s0
@

1
A!

ffiffiffiffiffiffiffiffiffiffiffi
pC T

3

s
: ð22Þ

Equation (22) is the same as Equation (13) because the normalized
energy Kð�uu; �ddÞ is dominated by the harmonic potential 3ð�uu� �ddÞ=C as
�uu!1. Equations (A19) and (A20), the partition function as �uu! 0
is found to be

Zð�uu! 0Þ �

Te1=T

2
C � 1

e
½ð1=TÞþð1=3Tð1=C�1ÞÞ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1=C� 1Þ=pT

q erfc 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tð1=C� 1Þ

q
0
@

1
A C < 1

8>>>><
>>>>:

ð23Þ

The normalized effective work of adhesion can now be calculated
using Equations (10c) and (10f). It should be emphasized that the
asymptotic behavior Zð�uu! 0Þ given by Equation (23) is not accurate
for extremely large compliance. The reason is as follows. The Laplace
method works as long as the integrals are bounded. As C!1, the
integral becomes unbounded so the method is expected to break
down for large C. Specifically, the normalized energy function,
Kð0; �ddÞ ¼ 3�dd

2
= C� 1=ð1þ �ddÞ2, starts from �1 at �dd ¼ 0 and monotoni-

cally increases to infinity. For very soft materials with extremely
large compliance C, Kð0; �ddÞ is close to zero until �dd ffi

ffiffiffiffi
C

p
. Because

the asymptotic solution depends only on the local expansion of
Kð0; �ddÞ about �dd ¼ 0, it ignores the large contribution from the neigh-
borhood of �dd ¼ 0 to �dd ffi

ffiffiffiffi
C

p
where Kð0; �ddÞ � 0, i.e., e�Kð0;�ddÞ=T � 1.

Indeed, as C!1,
R1

0 e�Kð0;�ddÞ=Td�dd is no longer governed by the
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behavior of Kð0; �ddÞ at �dd ¼ 0 but rather determined by the quadratic
term 3�dd

2
=C; that is

Zð�uu! 0;C!1Þ �
Z 1

0

e�3�dd
2
=C Td�dd ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
pC T

3

s
: ð24Þ

Using Equations (10c,f), (22), (23), and (24), the normalized effective
work of adhesion is found to be

Weff

¼
1þ C

3ð1�CÞ
þT ln erfc 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Tð1=C�1Þ
p
� �

� ln 2� 1

2
lnð1�CÞ

� �
C < 1;

1� T
2 ln 4pC

3T
C � 1;

�T ln 2 C!1:

8>>>><
>>>>:

ð25a�cÞ

The solid line in Figure 5 represents the asymptotic solution (25a,b) of
Weff . Figure 5 shows that Weff is underestimated by Equation (25) in
the regime of C << 1. Indeed, from Equation (25a), as C! 0,
Weff ! 1� T ln 2, which is slightly less than one because T << 1. In
the regime C >> 1, our numerical result in Figure 5 shows that Weff

decays as �ln C, consistent with Equation (25b). This is because
Gð0Þ ¼�ln Zð0Þ is independent of C, while Gð1Þ ¼ � ln Zð1Þ decays
as �ln C. For very large C, this decrease is purely entropic, because
the mean internal energy at both bound (�uu! 0) and unbound
(�uu!1) states are independent of C. Specifically, the mean internal
energy in the two states, calculated using Equations (10d), (22), and
(23), are, respectively,

hEð�uu!1Þi ¼ 1

2
; ð26aÞ

and

hEð�uu! 0Þi ¼ 1

T
; ð26bÞ

both independent of C.

4.2. Modified Linear Spring Model

Equation (25c) indicates that for extremely compliant materials, the
effective work of adhesion can be negative, which is unphysical. This
unphysical result is due to the fact that the linear spring model allows
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unrestricted displacements, whereas extensions of a real molecule are
bounded. To explore this idea, for any �uu, we constrain the motion, �dd, of
the springs in a box of width 2a centered at �uu ¼ a (see Figure 7a).
Within this box, the harmonic potential is maintained, whereas the
potential outside the box is replaced by a rigid wall (infinite potential).
For very large compliance, the harmonic potential is almost zero
within the box. The total potential for �uu!1 is shown in Figure 7b.
The partition function for this case is

Zð�uu!1;C!1Þ ¼
Z �uuþa

�uu�a

ð1Þd�dd ¼ 2a: ð27Þ

The potential for the bounded state, �uu! 0, is shown in Figure 7c. The
partition function for this case is

Zð�uu! 0;C!1Þ ¼
Z a

0

e1=½Tð1þ�ddÞ2�d�dd: ð28Þ

Because 1=Tð1þ aÞ2 < 1=Tð1þ �ddÞ2 < 1=T, we find ae1=Tð1þaÞ2 <
Zð�uu! 0;C!1Þ<ae1=T. Using Equations (10c) and (10f), the effective
work of adhesion must lie in the range

ð1þ aÞ�2 � T ln 2 < Weff ðC!1Þ < 1� T ln 2: ð29Þ

FIGURE 7 Modification of the linear spring model.
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Equation (29) shows that Weff can approach different values as C!1
by reducing the size of the box 2a. This effect is demonstrated by the
dashed lines in Figure 5.

To conclude, the linear spring model is unrealistic at very
large deformation (u� d ffi Nb). In this regime, the deformation is
governed by stretching of the covalent bonds, which is represented
by the infinite potential. Therefore, if we replace our linear spring
model by a more realistic model of a polymer chain, the effective
work of adhesion will be positive even for very large compliances.
We have confirmed analytically that the introduction of a confining
potential does not alter the conclusion that adhesive strength vanishes
with increasing compliance. Details of this analysis are available from
the authors.

5. SUMMARY AND CONCLUSIONS

We show that the adhesive stress of soft solids can be dramatically
reduced by thermal fluctuation with little changes in the effective
work of adhesion (change is logarithmic with compliance). The peak
adhesive stress is found to be the same as the intrinsic strength for
very stiff materials and is on the order of the elastic modulus for soft
materials. The effective work of adhesion equals the intrinsic work of
adhesion for stiff materials and decays logarithmically with com-
pliance because of an entropic effect. For materials of practical inter-
est, the effective work of adhesion predicted by our model is
quantitatively correct. For extremely compliant solids, our model
underestimates the work of adhesion. This discrepancy can be
removed by using a more realistic model for chain deformation.

In this work, we have focused our interests in temperatures below
or about room temperature, which is the typical situation. It is easy
to see that the effective work of adhesion in the case of very high tem-
perature is the same as the case of large compliance. First of all, the
energy function is dominated by the harmonic potential in the
unbound state (�uu!1). Hence, the partition function in the unbound
state is still given by Equation (22). In the bound state where �uu! 0,
the normalized energy Kð�uu! 0; �ddÞ equals 3�dd

2
=C T � 1=Tð1þ �ddÞ2,

which is zero at high temperature (T) except for very large �dd. That
is, the van der Waals potential 1=Tð1þ �ddÞ2 is negligible compared with
the quadratic term 3�dd

2
=C T in the calculation of the partition function

in the bound state. This is the same situation as the case of large
compliance (C). In addition, the normalized compliance, C, and tem-
perature, T, play the same role in the dominant term 3�dd

2
=C T of the

energy and thus in the evaluation of the partition function. According
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to Equations (10c,f), the effective work of adhesion is, therefore, the
same for high temperature and large compliance.

In our model, the molecules bridging the interface are under ther-
modynamic equilibrium. Irreversible processes such as breaking of
covalent bonds have not been considered. As pointed out by Lake
and Thomas [21], the work of fracture can be greatly amplified
because of the stretching of the covalent bonds in the molecule,
because all the energy stored in the bonds is lost upon breaking of
one bond. This effect is not included in our model.

We also have not considered in our model any rate effect, viscoelas-
ticity, or nonlinearity that may significantly increase the adhesive
strength and effective work of adhesion. For example, it has been
observed that for polymer gels or pressure-sensitive adhesives, the
decohesion strength remains in the MPa range whereas the modulus
can drop to the kPa range. One possible explanation is that the mate-
rials on the interface can be locally stiffened; i.e., the local modulus
can be much higher than the bulk modulus. The nonlinearity can be
included by modifying the spring model, but it will make the result
much harder to interpret and is out of the scope of this work.

Lastly, our model can be applied to the case of a crack, where there
is a displacement profile behind the crack tip. The relation obtained in
this work between the adhesive stress, r, and the separation, u, can be
used for a generic point on the crack face. In this case, our model
would serve as a cohesive zone model. The focus of our work has been
on the strength of a layer of adhesive molecules that, for compliant
materials, can reasonably be expected to be in thermodynamic equilib-
rium. Because the molecules that make up the adhesive region are the
same as those in the bulk, their properties allow us to relate adhesive
strength to bulk compliance. However, we do not specifically consider
the mechanics and thermodynamics of the exterior body itself.
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APPENDIX A

The total energy consists of two contributions. The first is the entropic
loss of the molecules when they leave the bulk. Assuming the mole-
cules bridging the two interfaces are linear entropic springs with com-
pliance, C, the energy of each spring due to its stretch is

Eeðu; dÞ ¼
ðu� dÞ2

2C
; ðA1Þ
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where u and d are shown in Figure 1. The other contribution is the
adhesive interaction between the two surfaces. That associated with
a particular molecule can be calculated by the van der Waals energy
between a half space and a column starting from the open end of the
molecule extending to infinity, as shown in Figure A1.

Using a 6–12 Lennard–Jones potential for two atoms at a distance
of R,

VðRÞ ¼ � A

R6
þ B

R12
; ðA2Þ

the van der Waals energy between the half space and a column of unit
area is

wðdÞ ¼
Z 1

d

Z 1
0

Z 1
0

ðq2dxÞðq12prdrdyÞ

� � A

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ yÞ2 þ r2

q
Þ6
þ B

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ yÞ2 þ r2

q
Þ12

2
64

3
75

¼ 2pq2q1 �
A

24d2
þ B

720d8

� �
; ðA3Þ

where q1 is the number of atoms per unit length in the half space, and q2

is the number of atoms per unit length in the column. Note that
Equation (A3) has an attractive part and a repulsive part. For sim-
plicity, we replace the repulsive part with a hard wall. To do this, we
first find the equilibrium distance, do, by differentiating Equation (A3)
with respect to d and setting the result equal to zero. This results in

do ¼
2B

15A

� �1=6

: ðA4Þ

FIGURE A1 Calculating the van der Waals energy associated with a parti-
cular molecule by the interaction between a half space (solid 1 on the left)
and a column (on the right), which starts from the open end of the molecule
and extends to infinity.
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By maintaining wðdÞ in Equation (A3) for d � do while replacing
wðd < doÞ with a hard wall, we can write the van der Waals energy as

wðdÞ ¼ �Wad

Ro

do

dþ do

� �2
; ðA5Þ

where

Wad

Ro
� pq1q2A

12d2
o

: ðA6Þ

Ro in Equation (A6) is the number of molecules per unit area on the sur-
face, and Wad can be identified as the intrinsic work of adhesion. Note
that the coordinate d in Equation (A5) has been shifted by do so that
the range of d is from 0 to infinity. At d ¼ 0 (in contact), Equation (A5)
reduces to wð0Þ ¼ �Wad=Ro, as expected.

The total energy, E, associated with a particular molecule is the
sum of Equations (A1) and (A5), which results in Equation (1).

APPENDIX B

Here we look for the stationary points of the function Kð�uu; �ddÞ. Differen-
tiating Kð�uu; �ddÞ with respect to �dd and setting it equal to zero give

3

C
ð�uu� �ddÞ ¼ 1

ð1þ �ddÞ3
: ðA7Þ

This can be rewritten as

X þ 1

X3
¼ Y ðA8Þ

by defining

X � 1þ �dd

ðC=3Þ1=4
; ðA9Þ

Y � 1þ �uu

ðC=3Þ1=4
: ðA10Þ

It can be easily verified (illustrated by Figure A2) that Equations (A8)
has no solution (i.e., Kð�uu; �ddÞ has no interior stationary points) if

Y<Ymin �
4

33=4
: ðA11Þ
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Thus, Kð�uu; �ddÞ is monotonically increasing as long as

�uu < �uumin �
4

3
C

1=4 � 1: ðA12Þ

For Y > Ymin, there are two stationary points. Denote these points
by X1ð�uuÞ and X2ð�uuÞ respectively. They satisfy X1ð�uuÞ < 31=4 �
Xmin < X2ð�uuÞ. The stationary point that lies to the right of Xmin is a
local minimum, whereas the stationary point that lies to the left of
Xmin is a local maximum. These facts can be verified by noting that

K00ð�uu; �dd < �ddminÞ < K00ð�uu; �dd ¼ �ddminÞ ¼ 0 < K00ð�uu; �dd > �ddminÞ ðA13Þ

where

�ddmin � XminðC=3Þ1=4 � 1: ðA14Þ

However, the local maximum exists only when �dd > 0. According to
Equation (A9), this requires

X1ð�uuÞ >
1

ðC=3Þ1=4
; ðA15Þ

which in turn, implies that

Y <
1

ðC=3Þ1=4
þ C

3

 !3=4
¼ 1þ ðC=3Þ
ðC=3Þ1=4

: ðA16Þ

FIGURE A2 Graph of dKð�uu; �ddÞ=d�dd ¼ 0.
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Note that because �uu ¼ YðC=3Þ1=4 � 1, the corresponding normalized
displacement is C=3. This is the reason why for �uu > �uumax � C=3, there
is only one stationary point, i.e., X2ð�uuÞ. Also, we have verified numeri-
cally that for �uu > �uumin, a good approximation to the local minimum is

X2 � Y � 1:2

Y3
: ðA17Þ

It should be noted that this above analysis implicitly assumes
that ðC=3Þ�1=4 < 31=4 (see Figure A2). However, if C < 1, then
ðC=3Þ�1=4 > 31=4. In this case, Equation (A8) has no solutions for
�dd > 0 unless �uu > �uumax. For �uu > �uumax, the only solution to Equation
(A8) is a local minimum and is given also by Equation (18).

APPENDIX C

We calculate the contribution to Zð�uuÞ and Ið�uuÞ from the minima of the
normalized energy function Kð�uu; �ddÞ. As noted in Appendix B, the mini-
mum of Kð�uu; �ddÞ either occurs at �dd ¼ 0 or at �dd2 � �uu� 0:4C=ð1þ �uuÞ3. The
local expansion of Kð�uu; �ddÞ about �dd ¼ 0 is

Kð�uu; �ddÞ ¼ Kð�uu; 0Þ þ K0ð�uu; 0Þ�ddþ K00ð�uu; 0Þ
2

�dd
2 þ 	 	 	 ; ðA18Þ

where K0ð�uu; �ddÞ and K00ð�uu; �ddÞ indicate the first and second derivatives of
Kð�uu; �ddÞ with respect to �dd. To keep the linear term of Equation (A18) in
the evaluation of Zð�uuÞ and Ið�uuÞ, we must insist that K0ð�uu; 0Þ > 0, which
requires �uu < �uumax � C=3. Similarly, in order to keep the quadratic
term, K00ð�uu; 0Þ > 0, which requires C < 1. Therefore, for C � 1, Zð�uuÞ
and Ið�uuÞ near �dd ¼ 0 are determined by keeping the linear terms of
Kð�uu; �ddÞ about �dd ¼ 0:

Zð�uuÞ �
Z 1

0

e�½Kð�uu;0ÞþK0ð�uu;0Þ�dd�=Td�dd ¼ Te�Kð�uu;0Þ=T

K0ð�uu; 0Þ ; ðA19Þ

Ið�uuÞ �
Z 1

0

�dde�½Kð�uu;0ÞþK0ð�uu;0Þ�dd�=Td�dd ¼ T
2
e�Kð�uu;0Þ=T

½K0ð�uu; 0Þ�2
: ðA20Þ

For C < 1, Zð�uuÞ, and Ið�uuÞ near �dd ¼ 0 are determined by keeping the
linear and quadratic terms of Kð�uu; �ddÞ about �dd ¼ 0:

Zð�uuÞ �
Z 1

0

e�½Kð�uu;0ÞþK0ð�uu;0Þ�ddþK00ð�uu;0Þ�dd2
=2�=Td�dd

¼ e�½Kð�uu;0Þ=T�½K
0ð�uu;0Þ�2=2TK00ð�uu;0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K00ð�uu; 0Þ=pT
q erfc

K0ð�uu; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TK00ð�uu; 0Þ

q
0
B@

1
CA; ðA21Þ
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Ið�uuÞ �
Z 1

0

�dde�½Kð�uu;0ÞþK0ð�uu;0Þ�ddþK00ð�uu;0Þ�dd2
=2�=Td�dd

¼ Te�Kð�uu;0Þ=T

K00ð�uu; 0Þ
� K0ð�uu; 0Þ

K00ð�uu; 0Þ
e�½Kð�uu;0Þ=T�½K

0ð�uu;0Þ�2=2TK00ð�uu;0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; 0Þ=pT

q

� erfc
K0ð�uu; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TK00ð�uu; 0Þ

q
0
B@

1
CA ðA22Þ

It can be shown (using the asymptotic behavior of the complementary
error function) that Equations (A21) and (A22) agree with Equations
(A19) and (A20) as C! 1. Following the same approach, Zð�uuÞ and
Ið�uuÞ near the local minimum �dd2, if it exists, are found to be

Zð�uuÞ � e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K00ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
A; ðA23Þ

Ið�uuÞ �
�dd2e�Kð�uu;�dd2Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0ð�uu; �dd2Þ=pT

q erfc ��dd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ð�uu; �dd2Þ

2T

s0
@

1
A; ðA24Þ

where K00ð�uu; �dd2 can be shown to be positive using the approximation
(18) and �uu > �uumin � ð4=3ÞC

1=4 � 1, which is the condition for �dd2 to exist.
The simplest way of estimating Zð�uuÞ and Ið�uuÞ is to add the two contri-
butions together, resulting in Equations (19a,b) and (20a,b).
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